Noise reduction in X-ray photon correlation spectroscopy with convolutional neural networks encoder–decoder models

SCIENTIFIC REPORTS(2021)

引用 10|浏览14
暂无评分
摘要
Like other experimental techniques, X-ray photon correlation spectroscopy is subject to various kinds of noise. Random and correlated fluctuations and heterogeneities can be present in a two-time correlation function and obscure the information about the intrinsic dynamics of a sample. Simultaneously addressing the disparate origins of noise in the experimental data is challenging. We propose a computational approach for improving the signal-to-noise ratio in two-time correlation functions that is based on convolutional neural network encoder–decoder (CNN-ED) models. Such models extract features from an image via convolutional layers, project them to a low dimensional space and then reconstruct a clean image from this reduced representation via transposed convolutional layers. Not only are ED models a general tool for random noise removal, but their application to low signal-to-noise data can enhance the data’s quantitative usage since they are able to learn the functional form of the signal. We demonstrate that the CNN-ED models trained on real-world experimental data help to effectively extract equilibrium dynamics’ parameters from two-time correlation functions, containing statistical noise and dynamic heterogeneities. Strategies for optimizing the models’ performance and their applicability limits are discussed.
更多
查看译文
关键词
Characterization and analytical techniques,Scientific data,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要