Carbonyl Reduction Pathway In Hepatic In Vitro Metabolism Of Anthracyclines: Impact Of Structure On Biotransformation Rate

TOXICOLOGY LETTERS(2021)

引用 2|浏览2
暂无评分
摘要
Carbonyl reduction biotransformation pathway of anthracyclines (doxorubicin, daunorubicin) is a significant process, associated with drug metabolism and elimination. However, it also plays a pivotal role in anthracyclines-induced cardiotoxicity and cancer resistance. Herein, carbonyl reduction of eight anthracyclines, at in vivo relevant concentrations (20 mM), was studied in human liver cytosol, to describe the relationship between their structure and metabolism. Significant differences of intrinsic clearance between anthracyclines, ranging from 0,62-74,9 mu L/min/mg were found and associated with data from in silico analyses, considering their binding in active sites of the main anthracyclines-reducing enzymes: carbonyl reductase 1 (CBR1) and aldo-keto reductase 1C3 (AKR1C3). Partial atomic charges of carbonyl oxygen atom were also determined and considered as a factor associated with reaction rate. Structural features, including presence or absence of side-chain hydroxy group, a configuration of sugar chain hydroxy group, and tetracyclic rings substitution, affecting anthracyclines susceptibility for carbonyl reduction were identified. (C) 2021 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Anthracyclines, Drug toxicity, Pharmacokinetics, Drug metabolism structure-metabolism relationship
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要