In Vitro Adventitious Roots: A Non-Disruptive Technology For The Production Of Phytoconstituents On The Industrial Scale

CRITICAL REVIEWS IN BIOTECHNOLOGY(2021)

引用 14|浏览3
暂无评分
摘要
The current trends of consumer-driven demands for natural therapeutics and the availability of evidence-based phytopharmaceuticals from traditional knowledge has once again brought the medicinal plants into forefront of health. In 2019, World Health Organization global report on traditional and complementary medicine has also substantiated the revival of herbal medicine including its convergence with conventional medicine for the management and prevention of diseases. It means these industries need plenty of plant materials to meet the unprecedented demands of herbal formulations. However, it is pertinent to mention here that around 70-80% medicinal plants are sourced from the wild and most of such highly acclaimed plants are listed under Rare, Endangered and Threatened species by IUCN. Additionally, over 30% traditional health formulations are based on underground plant parts, which lead to the uprooting of plants. Overharvesting from limited plant populations, meager conventional cultivation and a rising fondness for natural products exerting enormous pressure on natural habitats. Therefore, the nondestructive means of phytochemical production employing biotechnological tools could be used for sustainable production and consumption patterns. In recent years, a number of reports described the use of adventitious roots induced under in vitro conditions for the extraction of phytochemicals on a sustainable basis. In this article, efforts are made to review recent developments in this area as well as understand the induction mechanisms of adventitious roots, their in vitro cultivation, probable factors that affect the growth and metabolite production, and assess the possibility of industrial scale production to meet the rising demands of natural herbs.
更多
查看译文
关键词
Plant tissue culture, metabolite, induction, fate transition, auxin, bioreactor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要