Low-intensity focused ultrasound-augmented Cascade chemodynamic therapy via boosting ROS generation.

Liming Deng,Mingzhu Liu, Danli Sheng,Yuanli Luo, Dong Wang,Xian Yu, Zhigang Wang, Haitao Ran,Pan Li

Biomaterials(2021)

引用 42|浏览10
暂无评分
摘要
Fenton reaction-mediated chemodynamic therapy (CDT), which destroys tumor cells by converting H2O2 into cytotoxic hydroxyl radical (OH) and singlet oxygen (1O2) species, is a promising field. However, Fenton-based CDT is severely impaired by the inappropriate tumor environment associated with undesirable intratumoral acidity and insufficient H2O2 supply in tumor microenvironment (TME). Therefore, a strategy that can address these concerns is highly desired and beneficial for boosting such treatment. Herein, a magnetic nanoreactor system (denoted as poly (lactic-co-glycolic acid) (PLGA)-superparamagnetic iron oxide (SPIO)&vitamin C (Vc) was constructed with Vc in the core, SPIO on the shell, and PLGA as the building carrier. Upon low-intensity focused ultrasound irradiation, on-demand Vc release can locally decompose into H2O2, which can generate a favorable condition for facilitating SPIO-based Fenton-like reaction and result in continuous O2 and OH/1O2 generation. The TME modulation-augmented CDT by this nanoreactor based on the reinforced Fenton reaction tremendously improved the antitumor outcomes, especially under increased accumulation contributed by magnetic targeting combined with enhanced permeability and retention effect. Moreover, the explosive production of oxygen can be monitored by real-time photoacoustic imaging, offering a noninvasive means to forecast the treatment efficacy. Therefore, this established microenvironment modulation strategy for augmenting Fenton reaction-based CDT paves a new avenue to realize highly efficient cancer theranostics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要