Quantitative analysis of non-equilibrium systems from short-time experimental data

COMMUNICATIONS PHYSICS(2021)

引用 17|浏览10
暂无评分
摘要
Estimating entropy production directly from experimental trajectories is of great current interest but often requires a large amount of data or knowledge of the underlying dynamics. In this paper, we propose a minimal strategy using the short-time Thermodynamic Uncertainty Relation (TUR) by means of which we can simultaneously and quantitatively infer the thermodynamic force field acting on the system and the (potentially exact) rate of entropy production from experimental short-time trajectory data. We benchmark this scheme first for an experimental study of a colloidal particle system where exact analytical results are known, prior to studying the case of a colloidal particle in a hydrodynamical flow field, where neither analytical nor numerical results are available. In the latter case, we build an effective model of the system based on our results. In both cases, we also demonstrate that our results match with those obtained from another recently introduced scheme.
更多
查看译文
关键词
Statistical physics,thermodynamics and nonlinear dynamics,Thermodynamics,Physics,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要