Localized Wannier Function Based Tight-Binding Models For Two-Dimensional Allotropes Of Bismuth

NEW JOURNAL OF PHYSICS(2021)

引用 1|浏览6
暂无评分
摘要
With its monoelemental composition, various crystalline forms and an inherently strong spin-orbit coupling, bismuth has been regarded as an ideal prototype material to expand our understanding of topological electronic structures. In particular, two-dimensional bismuth thin films have attracted a growing interest due to potential applications in topological transistors and spintronics. This calls for an effective physical model to give an accurate interpretation of the novel topological phenomena shown by two-dimensional bismuth. However, the conventional semi-empirical approach of adapting bulk bismuth hoppings fails to capture the topological features of two-dimensional bismuth allotropes because the electronic band topology is heavily influenced by crystalline symmetries. Here we provide a new parameterization using localized Wannier functions derived from the Bloch states in first-principles calculations. We construct new tight-binding models for three types of two-dimensional bismuth allotropes: a Bi (111) bilayer, bismuthene and a Bi (110) bilayer. We demonstrate that our tight-binding models can successfully reproduce the electronic and topological features of these two-dimensional allotropes. Moreover, these tight-binding models can be used to explain the physical origin of the occurrence of novel band topology and the perturbation effects in these bismuth allotropes. In addition, these models can serve as a starting point for investigating the electron/spin transport and electromagnetic response in low-dimensional topological devices.
更多
查看译文
关键词
topological materials, electronic structure, tight-binding model, first-principles calculations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要