Altitude On Cartographic Materials And Its Correction According To New Measurement Techniques

REMOTE SENSING(2021)

引用 9|浏览3
暂无评分
摘要
Determining the correct height of mountain peaks is vital for tourism, but it is also important as a reference point for devices equipped with GPS (Global Positioning System), e.g., watches or car navigation systems. The peak altitude data are part of geographic and geodetic information. As more modern technologies and equipment become available, their precisions should increase. However, verification of peak heights is usually only conducted for the highest, well-known mountains-lower peaks or mountain passes are rarely verified. Therefore, this study focuses on an investigation of 12 altitude points on a section of the longest and most famous touristic trail in Poland (the Main Beskid Trail), located in the Orava-Zywiec Beskids Mts (Mountains). The aim of this research is to measure and verify the heights of the 12 selected mountain peaks, in addition to evaluating the chosen methods based on the quality of the obtained data and determining their suitability and opportunities for use in further research. Measurements were obtained at the most specific height points-on the 12 highest points of the summits. This study compares two modern measurement techniques: the global navigation satellite system (GNSS) and light detection and ranging (LiDAR). The obtained results were later compared with those widely used on the internet and in printed materials (period covered: 1884-2015). This analysis demonstrates that lesser-known objects are rarely the subject of remeasurement and significant altitude errors may occur, primarily because the heights originated from a source in the past when modern methods were not available. Our findings indicate that the heights of the peaks presented in cartographic materials are inaccurate. The assumed heights should be corrected by direct measurements using modern techniques.
更多
查看译文
关键词
measuring techniques, GNSS, LiDAR, mountain, peak, altitude, old maps, cartography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要