谷歌浏览器插件
订阅小程序
在清言上使用

Butyrophilin Molecules Govern Γδ T Cell Reactivity Against Phosphoantigens

˜The œjournal of immunology/˜The œJournal of immunology(2020)

引用 0|浏览27
暂无评分
摘要
Abstract Humans have a minor lymphocyte population of gamma-delta (γδ) T cells. The majority of these express a recombined Vγ9Vδ2 T cell receptor (TCR) attractive to immunotherapy. This distinct TCR conveys reactivity to phosphorylated antigens (pAg) that derive from pathogens or accumulate inside tumour cells. Such T cell responses are regulated by butyrophilin (BTN) 3A1 and other membrane-related proteins present on antigen-presenting cells. However, the activation mechanism and direct molecular ligand recognised by the γδ TCR remain a crucial unresolved question. Herein, we used pAg-reactive TCR probes in a whole-genome screen to identify BTN2A1 as an essential ligand. In further investigation, we elucidated its functionality working in cis with BTN3A1. Also, a mutational analysis unveiled critical regions of the γδ TCR are positioned at opposite sides. We locate germ-line encoded residues of the Vγ9 chain were responsible for BTN2A1 binding, whereas two amino-acids of the Vδ2 chain were necessary for a complete response to pAg. In conclusion, we propose a dual-ligand complex model that senses pAg to evoke immune responses, wherein BTN2A1 sets the framework to develop new opportunities on γδ T cell-based immunotherapies.
更多
查看译文
关键词
Memory T Cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要