Chrome Extension
WeChat Mini Program
Use on ChatGLM

The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks

NATURE COMMUNICATIONS(2021)

Cited 34|Views28
No score
Abstract
The Bloom syndrome helicase BLM interacts with topoisomerase III alpha (TOP3A), RMI1 and RMI2 to form the BTR complex, which dissolves double Holliday junctions to produce non-crossover homologous recombination (HR) products. BLM also promotes DNA-end resection, restart of stalled replication forks, and processing of ultra-fine DNA bridges in mitosis. How these activities of the BTR complex are regulated in cells is still unclear. Here, we identify multiple conserved motifs within the BTR complex that interact cooperatively with the single-stranded DNA (ssDNA)-binding protein RPA. Furthermore, we demonstrate that RPA-binding is required for stable BLM recruitment to sites of DNA replication stress and for fork restart, but not for its roles in HR or mitosis. Our findings suggest a model in which the BTR complex contains the intrinsic ability to sense levels of RPA-ssDNA at replication forks, which controls BLM recruitment and activation in response to replication stress. The BLM helicase interacts with the topoisomerase TOP3A and RMI1 to form the BTR complex. Here, the authors reveal that this complex contains multiple binding sites for the single-stranded DNA-binding complex RPA, and that RPA-binding stimulates BLM recruitment to stalled replication forks to promote their restart after replication stress.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined