Theoretical Study Of Current-Induced Domain Wall Motion In Magnetic Nanotubes With Azimuthal Domains

PHYSICAL REVIEW B(2021)

引用 7|浏览7
暂无评分
摘要
We report a theoretical overview of the magnetic domain wall behavior under an electric current in infinitely long nanotubes with azimuthal magnetization, combining the one-dimensional analytic model and micromagnetic simulations. We highlight effects that, besides spin-transfer torques already largely understood in flat strips, arise specifically in the tubular geometry: the Ersted field and curvature-induced magnetic anisotropy resulting both from the exchange interaction and material growth. Depending on both the geometry of the tube and the strength of the azimuthal anisotropy, Bloch or Ned walls arise at rest, resulting in two regimes of motion largely dominated by either spin-transfer torques or the Ersted field. We determine the Walker breakdown current in all cases, and highlight the most suitable parameters to achieve high domain wall speed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要