谷歌浏览器插件
订阅小程序
在清言上使用

Compact Polarimetry Synthetic Aperture Radar Ocean Wind Retrieval: Model Development and Validation

Journal of atmospheric and oceanic technology(2021)

引用 5|浏览4
暂无评分
摘要
We have developed C-band compact polarimetry geophysical model functions for RADARSAT Constellation Mission ocean surface wind speed retrieval. A total of 1594 RADARSAT-2 images acquired in quad-polarization SAR imaging mode were collocated with in situ buoy observations. This dataset is first used to simulate compact polarimetric data and to examine their dependencies on radar incidence angle and wind vectors. We find that right circular transmit, right circular receive (RR-pol) radar backscatters are less sensitive to incidence angles and wind directions but are more dependent on wind speeds, compared to right circular transmit, horizontal receive (RH-pol), right circular transmit, vertical receive (RV-pol), and right circular transmit, left circular receive (RL-pol). Subsequently, the matchup data pairs are used to derive the coefficients of the transfer functions for the proposed compact polarimetric geophysical model (CMOD) functions, and to validate the associated wind speed retrieval accuracy. Statistical comparisons show that the retrieved wind speeds from CMODRH, CMODRV, CMODRL, and CMODRR are in good agreement with buoy measurements, with root-mean-square errors of 1.38, 1.51, 1.47, and 1.25 m s(-1), respectively. The results suggest that compact polarimetry is a good alternative to linear polarization for wind speed retrieval. CMODRR is more appropriate to retrieve high wind speeds than CMODRH, CMODRV or CMODRL.
更多
查看译文
关键词
Ocean,Wind,Algorithms,Remote sensing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要