Discontinuous Collocation Methods And Gravitational Self-Force Applications

CLASSICAL AND QUANTUM GRAVITY(2021)

引用 0|浏览1
暂无评分
摘要
Numerical simulations of extreme mass ratio inspirals, the most important sources for the LISA detector, face several computational challenges. We present a new approach to evolving partial differential equations occurring in black hole perturbation theory and calculations of the self-force acting on point particles orbiting supermassive black holes. Such equations are distributionally sourced, and standard numerical methods, such as finite-difference or spectral methods, face difficulties associated with approximating discontinuous functions. However, in the self-force problem we typically have access to full a priori information about the local structure of the discontinuity at the particle. Using this information, we show that high-order accuracy can be recovered by adding to the Lagrange interpolation formula a linear combination of certain jump amplitudes. We construct discontinuous spatial and temporal discretizations by operating on the corrected Lagrange formula. In a method-of-lines framework, this provides a simple and efficient method of solving time-dependent partial differential equations, without loss of accuracy near moving singularities or discontinuities. This method is well-suited for the problem of time-domain reconstruction of the metric perturbation via the Teukolsky or Regge-Wheeler-Zerilli formalisms. Parallel implementations on modern CPU and GPU architectures are discussed.
更多
查看译文
关键词
gravitational self-force, black hole perturbation theory, extreme mass ratio inspiral, LISA source modelling, collocation methods, pseudospectral methods, discontinuous interpolation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要