Identification and control of the volatile organic compounds activity in confined environments (Mosques)

The Journal of Supercomputing(2021)

引用 0|浏览2
暂无评分
摘要
Mosques within the professional environments such as universities, banks and shopping malls possess different features that from the public mosques. These mosques are of relatively smaller size, less airy, populated for a shorter duration of the day and the visitors with more formal dressing. All these factors contribute to an increased activity of Volatile Organic Compounds (VOCs) generated by the visitors. Improper drying of the wet feet after ablution and/or prolonged wearing of socks, while being in professional environments, further worsens the situation. A prolonged activity of these VOCs in confined environments is not only unpleasant but also poses certain health issues. This study aims at identification of the need to control this activity within an acceptable limit by deploying a low-cost smart computational configuration of sensor array. The configuration parameters depend on a number of factors such as mosque space, ventilation, air conditioning and the quantity and quality of VOCs generated on average. Pertinent VOC data monitoring, computing and averaging across a network is done in real-time using mobile sensing stations. A proof of concept-based technical feasibility on the adoption of a control strategy is conducted by establishing an acceptable threshold level for the VOCs activity in varying conditions. As the sensitivity of the sensor and the lifespan & proliferation of the VOCs are affected by the humidity, temperature and the air circulation, these factors are closely monitored. Mosque being a sacred place, all these experiments are constrained to be conducted in a controlled manner without any disturbance whatsoever to the environment, visitors and the religious activities being performed.
更多
查看译文
关键词
Air contaminants,VOC sensors,Low-cost computing,Intelligent sensing,Air quality monitoring,Soiled clothing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要