Dispersion And The Speed-Limited Particle-In-Cell Algorithm

PHYSICS OF PLASMAS(2021)

引用 2|浏览14
暂无评分
摘要
This paper discusses temporally continuous and discrete forms of the speed-limited particle-in-cell (SLPIC) method first treated by Werner et al. [Phys. Plasmas 25, 123512 (2018)]. The dispersion relation for a 1D1V electrostatic plasma whose fast particles are speed-limited is derived and analyzed. By examining the normal modes of this dispersion relation, we show that the imposed speed-limiting substantially reduces the frequency of fast electron plasma oscillations while preserving the correct physics of lower-frequency plasma dynamics (e.g., ion acoustic wave dispersion and damping). We then demonstrate how the time step constraints of conventional electrostatic particle-in-cell methods are relaxed by the speed-limiting approach, thus enabling larger time steps and faster simulations. These results indicate that the SLPIC method is a fast, accurate, and powerful technique for modeling plasmas wherein electron kinetic behavior is nontrivial (such that a fluid/Boltzmann representation for electrons is inadequate) but evolution is on ion timescales. Published under an exclusive license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要