谷歌浏览器插件
订阅小程序
在清言上使用

HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis

The Journal of biological chemistry(2021)

引用 11|浏览13
暂无评分
摘要
The CRISPR/Cas9 system has been used in a wide range of applications in the production of gene-edited animals and plants. Most efforts to insert genes have relied on homology-directed repair (HDR)-mediated integration, but this strategy remains inefficient for the production of gene-edited livestock, especially monotocous species such as cattle. Although efforts have been made to improve HDR efficiency, other strategies have also been proposed to circumvent these challenges. Here we demonstrate that a homology-mediated end-joining (HMEJ)-basedmethod can be used to create gene-edited cattle that displays precise integration of a functional gene at the ROSA26 locus. We found that the HMEJ-based method increased the knock-in efficiency of reporter genes by eightfold relative to the traditionalHDR-basedmethod in bovine fetal fibroblasts. Moreover, we identified the bovine homology of themouse Rosa26 locus that is an accepted genomic safe harbor and produced three live-borngene-edited cattlewith higher rates of pregnancy and birth, compared with previous work. These gene-edited cattle exhibited predictable expression of the functional gene natural resistance-associated macrophage protein-1 (NRAMP1), a metal ion transporter that should and, in our experiments does, increase resistance to bovine tuberculosis, one of the most detrimental zoonotic diseases. This research contributes to the establishment of a safe and efficient genome editing system and provides insights for gene-edited animal breeding.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要