Effects of polycyclic aromatic hydrocarbons and multiple metals co-exposure on the mosaic loss of chromosome Y in peripheral blood

Journal of Hazardous Materials(2021)

引用 12|浏览10
暂无评分
摘要
Mosaic loss of chromosome Y (mLOY) is an indicator of genome instability, but the environmental stressors of mLOY remained largely unknown. In this study, we detected the internal exposure levels of 11 polycyclic aromatic hydrocarbon (PAH) metabolites and 22 metals among 888 coke-oven workers, and calculated their blood mLOY based on genome-wide SNP genotyping data and presented as median log R ratio (mLRR-Y). The generalized linear model (GLM), LASSO, and Bayesian kernel machine regression (BKMR), were used to select mLOY-relevant chemicals. The results of these models consistently suggested the negative dose-response relationships of urinary 1-hydroxynaphthalene (1-OHNa), antimony (Sb), and molybdenum (Mo) with mLRR-Y. There were no pairwise interactions between these three chemicals (Pinteraction > 0.05), but subjects with high exposure to ≥ 2 kinds of these chemicals showed reducing mLRR-Y [β(95%CI) = − 0.015(− 0.023, − 0.008)], increasing oxidative DNA damage (marked by 8-hydroxydeoxyguanosine) [β(95%CI) = 0.625(0.454, 0.796)] and chromosome damage (marked by micronucleus frequency in lymphocytes) [frequency ratio (FR) and 95%CI = 1.146(1.047, 1.225)] than those with low exposure to all these chemicals. The combined effects of 1-OHNa, Sb, and Mo on elevating DNA damage may partly explain their joint effects on increased blood mLOY. These results provided a new insight into environmental hazards co-exposure on chromosome-Y deletions.
更多
查看译文
关键词
Polycyclic aromatic hydrocarbons,Metals,Mosaic loss of chromosome Y,Joint effects,DNA damage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要