Compact And Evenly Distributed K-Mer Binning For Genomic Sequences

BIOINFORMATICS(2021)

引用 11|浏览4
暂无评分
摘要
Motivation: The processing of k-mers (subsequences of length k) is at the foundation of many sequence processing algorithms in bioinformatics, including k-mer counting for genome size estimation, genome assembly, and taxonomic classification for metagenomics. Minimizers-ordered m-mers where m < k-are often used to group k-mers into bins as a first step in such processing. However, minimizers are known to generate bins of very different sizes, which can pose challenges for distributed and parallel processing, as well as generally increase memory requirements. Furthermore, although various minimizer orderings have been proposed, their practical value for improving tool efficiency has not yet been fully explored.Results: We present Discount, a distributed k-mer counting tool based on Apache Spark, which we use to investigate the behaviour of various minimizer orderings in practice when applied to metagenomics data. Using this tool, we then introduce the universal frequency ordering, a new combination of frequency-sampled minimizers and universal k-mer hitting sets, which yields both evenly distributed binning and small bin sizes. We show that this ordering allows Discount to perform distributed k-mer counting on a large dataset in as little as 1/8 of the memory of comparable approaches, making it the most efficient out-of-core distributed k-mer counting method available.
更多
查看译文
关键词
sequences,k-mer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要