Internal cell-penetrating peptide-mediated internalization enables a chimeric lysin to target intracellular pathogens

International Journal of Pharmaceutics(2021)

引用 1|浏览4
暂无评分
摘要
Intracellular pathogens pose serious challenges to the public health worldwide. Lysin, peptidoglycan hydrolase from phage, is promising alternative to conventional antibiotics because of its high bactericidal activity and low risk of resistance. However, most proteinaceous lysins cannot penetrate the mammalian cell membrane because of size exclusion. Previously, we reported a broad-spectrum chimeric lysin, ClyR, with a cysteine, histidine-dependent amidohydrolase/peptidase catalytic domain from PlyC lysin and an SH-3b cell-wall binding domain from PlySs2 lysin. Herein, we further report that a novel internal cell-penetrating peptide (CPP) is predicted in the junction region of the two constitutive domains of ClyR, mediated by which ClyR can be internalized by epithelial cells through caveolin-dependent endocytosis to target intracellular pathogens. Residues K153, P154, R169, and R188 of the internal CPP were found to be essential for ClyR-mediated internalization and intracellular killing. RNA-seq analysis further showed that there are minor differences in transcript and metabolic profiles from epithelial cells exposed to 100 μg/ml ClyR for 24 h. Taken together, our findings demonstrate a novel mechanism of internalization by ClyR, providing new insights into the rational designing of the next-generation lysins to target both extracellular and intracellular pathogens.
更多
查看译文
关键词
Bacteriophage lysin,Chimeric lysin,Lysin therapy,Intracellular pathogen,Cell-penetrating peptide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要