A MONOLITHIC ALGEBRAIC MULTIGRID FRAMEWORK FOR MULTIPHYSICS APPLICATIONS WITH EXAMPLES FROM RESISTIVE MHD

ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS(2022)

引用 2|浏览5
暂无评分
摘要
We consider monolithic algebraic multigrid (AMG) algorithms for the solution of block linear systems arising from multiphysics simulations. While the multigrid idea is applied directly to the entire linear system, AMG operators are constructed by leveraging the matrix block structure. In particular, each block corresponds to a set of physical unknowns and physical equations. Multigrid components are constructed by first applying existing AMG procedures to matrix sub-blocks. The resulting AMG sub-components are then composed together to define a monolithic AMG preconditioner. Given the problem-dependent nature of multiphysics systems, different blocking choices may work best in different situations, and so software flexibility is essential. We apply different blocking strategies to systems arising from resistive magnetohydrodynamics in order to demonstrate the associated trade-offs.
更多
查看译文
关键词
multigrid, algebraic multigrid, multiphysics, magnetohydrodynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要