谷歌浏览器插件
订阅小程序
在清言上使用

Subsampled STEM-ptychography

APPLIED PHYSICS LETTERS(2018)

引用 30|浏览19
暂无评分
摘要
Ptychography has been shown to be an efficient phase contrast imaging technique for scanning transmission electron microscopes (STEM). STEM-ptychography uses a fast pixelated detector to collect a “4-dimensional” dataset consisting of a 2D electron diffraction pattern at every probe position of a 2D raster-scan. This 4D dataset can be used to recover the phase-image. Current camera technology, unfortunately, can only achieve a frame rate of a few thousand detector frames-per-second (fps), which means that the acquisition time of the 4D dataset is up to 1000× slower than the scanning speed in a conventional STEM, thereby limiting the potential applications of this method for dose-fragile and dynamic specimens. In this letter, we demonstrate that subsampling provides an effective method for optimizing ptychographic acquisition by reducing both the number of detector-pixels and the number of probe positions. Subsampling and recovery of the 4D dataset are shown using an experimental 4D dataset with randomly removed detector-pixels and probe positions. After compressive sensing recovery, Wigner distribution deconvolution is applied to obtain phase-images. Randomly sampling both the probe positions and the detector at 10% gives sufficient information for phase-retrieval and reduces acquisition time by 100×, thereby making STEM-ptychography competitive with conventional STEM.Ptychography has been shown to be an efficient phase contrast imaging technique for scanning transmission electron microscopes (STEM). STEM-ptychography uses a fast pixelated detector to collect a “4-dimensional” dataset consisting of a 2D electron diffraction pattern at every probe position of a 2D raster-scan. This 4D dataset can be used to recover the phase-image. Current camera technology, unfortunately, can only achieve a frame rate of a few thousand detector frames-per-second (fps), which means that the acquisition time of the 4D dataset is up to 1000× slower than the scanning speed in a conventional STEM, thereby limiting the potential applications of this method for dose-fragile and dynamic specimens. In this letter, we demonstrate that subsampling provides an effective method for optimizing ptychographic acquisition by reducing both the number of detector-pixels and the number of probe positions. Subsampling and recovery of the 4D dataset are shown using an experimental 4D dataset with randomly r...
更多
查看译文
关键词
Ptychography,Detector,Phase-contrast imaging,Frame rate,Optical transfer function,Deconvolution,Compressed sensing,Scanning transmission electron microscopy,Computer vision,Computer science,Artificial intelligence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要