Process-Dependent Nanostructures Of Regenerated Cellulose Fibres Revealed By Small Angle Neutron Scattering

POLYMER(2021)

引用 10|浏览0
暂无评分
摘要
The nanometric internal structure of polymeric fibres is fundamental for their mechanical properties. Twodimensional small angle neutron scattering patterns were collected to obtain structural parameters of the elementary fibrils in regenerated cellulose fibres prepared by various fibre spinning technologies. Scattering features were fitted to model functions to derive parameters such as elementary fibril radius, long period of the repeating units of crystal and amorphous phase along the fibre axis, degree of orientation, and ellipticity. The correlation between structural parameters and the mechanical properties was studied for the fibres of different existing spinning processes and for the high-strength fibres. Former group showed high correlation with mechanical properties. The latter group showed generally lower correlation, but showed relatively high correlation with the long period. These structural parameters provide a basis for understanding the structure-property relationship of regenerated cellulose fibres as function of spinning types and conditions for further optimization.
更多
查看译文
关键词
Regenerated cellulose fibre, Structure-property relationship of fibre, Nanostructure by small angle neutron scattering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要