谷歌浏览器插件
订阅小程序
在清言上使用

Interfacial engineering of MoS2/MoN heterostructures as efficient electrocatalyst for pH-universal hydrogen evolution reaction

Journal of Alloys and Compounds(2021)

引用 45|浏览9
暂无评分
摘要
The design and development of low-cost and efficient catalysts for hydrogen evolution reaction (HER) from electrochemical water splitting is highly desirable. Constructing the interfacial engineering of heterostructures has been considered to be an effective method to improve the electrocatalytic activity. Here, the MoS2/MoN heterostructures with tuned components have been designed and fabricated by controllable nitridation of the as-prepared flower-like MoS2. The MoS2/MoN heterostructure electrocatalyst displays an efficient HER performance in pH-universal electrolytes, which requires an overpotential of 117 and 132 mV to reach a current density of 10 mA cm−2 in acid (0.5 M H2SO4) and alkaline (1 M KOH) media, respectively (without iR corrections). The good HER performance of MoS2/MoN heterostructures can be ascribed to the hierarchical architecture and the MoS2/MoN interfaces synergistic catalytic effects. X-ray photoelectron spectroscopy (XPS) and work function analysis reveal that MoS2/MoN interfaces synergistically facilitate transport of charge. Furthermore, the density functional theory (DFT) calculations suggest constructing the MoS2/MoN interface can optimize the hydrogen adsorption kinetic energy, thus accelerating the electrochemical HER.
更多
查看译文
关键词
Heterostructures,Interfacial engineering,MoS2/MoN,Hydrogen evolution reaction,Synergy effect
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要