Design Of Highly Ordered Hierarchical Catalytic Nanostructures As High-Flexibility Counter Electrodes For Fiber-Shaped Dye-Sensitized Solar Cells

APPLIED PHYSICS LETTERS(2021)

引用 6|浏览6
暂无评分
摘要
Ordered array structures will greatly reduce the stress formation in wearable electric devices during dynamic bending operation. In this work, highly flexible TiN-based fiber counter electrodes (FCEs) were designed via a post-ammonization treatment on the hydrothermally grown TiO2 nanowire arrays. Results show that the obtained TiN nanorod arrays (NRAs) are well aligned with a diameter of 200-320nm and a length of several hundred nanometers to similar to 1 mu m. Moreover, fiber-shaped dye-sensitized solar cells assembled using TiN FCEs showed the maximum photoelectric conversion efficiency (PCE) of 5.69%, which is 16.3% higher than that of the ones based on Pt FCEs. Analysis indicated that this enhancement in PCE could be mainly due to the better electrochemical catalytic activity of TiN NRAs. Furthermore, the optimizations of the nanoscale morphologies of TiN NRAs suggest that both small diameters and large lengths can benefit the PCE and the dynamic bending stability, while the diameters show a major influence on them. The optimal FCEs show an ultralow decay rate of 0.017 parts per thousand per bending cycle.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要