Continuum Gyrokinetic Simulations Of Edge Plasmas In Single-Null Geometries

Mikhail Dorf, M. Dorr

PHYSICS OF PLASMAS(2021)

引用 6|浏览11
暂无评分
摘要
The first continuum gyrokinetic calculations of electrostatic ion scale turbulence are presented for the case of a diverted tokamak geometry. The simulation model solves the long-wavelength limit of the full-F gyrokinetic equation for ion species coupled to the quasi-neutrality equation for electrostatic potential variations, where a fluid model is used for an electron response. In order to facilitate simulations of highly-anisotropic microturbulence in the presence of strong magnetic shear and a magnetic X-point, a numerical algorithm utilizing a locally field-aligned multiblock coordinate system has been developed and implemented in the 5D finite-volume code COGENT. In this approach, the toroidal direction is divided into blocks, such that within each block, the cells are field-aligned and a non-matching grid interface is allowed at block boundaries. The toroidal angle corresponds to the "coarse" field-aligned coordinate, whereas the poloidal cross section, comprised of the radial and poloidal directions, is finely gridded to resolve short-scale perpendicular turbulence structures and to support accurate re-mapping (interpolation) at block boundaries. The 5D simulations explore cross-separatrix ion scale turbulence in the presence of a self-consistent radial electric field and address the effects of magnetic-shear stabilization in the X-point region.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要