Advancing direct ethanol fuel cell operation at intermediate temperature by combining Nafion-hybrid electrolyte and well-alloyed PtSn/C electrocatalyst

International Journal of Hydrogen Energy(2021)

引用 11|浏览4
暂无评分
摘要
The advancement of direct ethanol fuel cell (DEFC) represents a real challenge to electrochemical science because ethanol changes significantly the triple phase boundary properties such as the redox reactions and the proton transport. Ethanol molecules promote poor fuel cell performance due to their slow oxidation rate, reduction of the proton transport due to high affinity of ethanol by the membrane, and due to mixed potential when the ethanol molecules reach the cathode by crossover. DEFC performance has been improved by advances in the membranes, e.g., low ethanol crossover polymer composites, or electrode materials, e.g., binary/ternary catalysts. Herein, high temperature (130 °C) DEFC tests were systematically investigated by using optimized electrode and electrolyte materials: Nafion-SiO2 hybrid electrolyte and well-alloyed PtSn/C electrocatalyst. By optimizing both the electrode and the electrolyte in conjunction, DEFCs operating at 130 °C exhibited a threefold increase on performance as compared to standard commercially available materials.
更多
查看译文
关键词
Direct ethanol fuel cell,IT-DEFC,PtSn/C,Nafion-SiO2,Hybrid electrolyte
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要