Microfluid-Based Soft Metasurface For Tunable Optical Activity In Thz Wave

OPTICS EXPRESS(2021)

引用 7|浏览1
暂无评分
摘要
Metasurfaces are usually planar structures and do not possess intrinsic chirality and therefore hardly generate optical activity. Here we realized a tunable optical activity in a terahertz wave through a microfluid-based soft metasurface. The meta-atom is a chiral structured microchannel made of soft polydimethylsiloxane and injected with the liquid metal Galinstan. A microfluid pressure system is bonded to the metasurface to reconfigure all meta-atoms simultaneously. By pumping glycerol liquid into the pressure system, the metasurface is deformed from a planar structure to a three dimensional one, which manifests intrinsic chirality for optical activity realization. By controlling the injected glycerol volume, a polarization rotation from 0 degrees to 14 degrees at 0.19 THz is demonstrated. The soft metasurface with tunable optical activity can be flexibly applied in various applications such as polarization microscopy, bio-detection and material analysis, etc. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要