Roart: Range-Query Optimized Persistent Art

PROCEEDINGS OF THE 19TH USENIX CONFERENCE ON FILE AND STORAGE TECHNOLOGIES (FAST '21)(2021)

引用 58|浏览34
暂无评分
摘要
With the availability of commercial NVM devices such as Intel Optane DC PMM, it is time to start thinking about applying the existing persistent data structures in practice. This paper considers three practical aspects, which have significant influences on the design of persistent indexes, including functionality, performance and correctness.We design a new persistent index, ROART, based on adaptive radix tree (ART), taking all these practical aspects into account. ROART (i) proposes a leaf compaction method to reduce pointer chasing for range queries, (ii) minimizes persistence overhead with three optimizations, i.e., entry compression, selective metadata persistence and minimally ordered split, and (iii) designs a fast memory management to prevent memory leaks, and eliminates the long recovery time by proposing an instant restart strategy. Evaluations show that ROART outperforms the state-of-the-art radix tree by up to 1.65X and B+-Trees by 1.17 similar to 8.27x respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要