Generalization Of Spectral Bulk-Boundary Correspondence

PHYSICAL REVIEW B(2021)

引用 3|浏览5
暂无评分
摘要
The bulk-boundary correspondence in one dimension asserts that the physical quantities defined in the bulk and at the edge are connected, as well established in the argument for electric polarization. Recently, a spectral bulk-boundary correspondence (SBBC), an extended version of the conventional bulk-boundary correspondence to energy-dependent spectral functions, such as Green's functions, has been proposed in chiral-symmetric systems, in which the chiral operator anticommutes with the Hamiltonian. In this study, we extend the SBBC to a system with impurity scattering and dynamical self-energies, regardless of the presence or absence of a gap in the energy spectrum. Moreover, the SBBC is observed to hold even in a system without chiral symmetry, which substantially generalizes its concept. The SBBC is demonstrated with concrete models, such as superconducting nanowires and a Su-Schrieffer-Heeger model. Its potential applications and certain remaining issues are also discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要