Antifouling Silicone Hydrogel Contact Lenses With A Bioinspired 2-Methacryloyloxyethyl Phosphorylcholine Polymer Surface

ACS OMEGA(2021)

引用 28|浏览5
暂无评分
摘要
Inspired by the cell membrane surface as well as the ocular tissue, a novel and clinically applicable antifouling silicone hydrogel contact lens material was developed. The unique chemical and biological features on the surface on a silicone hydrogel base substrate were achieved by a cross-linked polymer layer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), which was considered important for optimal on-eye performance. The effects of the polymer layer on adsorption of biomolecules, such as lipid and proteins, and adhesion of cells and bacteria were evaluated and compared with several conventional silicone hydrogel contact lens materials. The MPC polymer layer provided significant resistance to lipid deposition as visually demonstrated by the three-dimensional confocal images of whole contact lenses. Also, fibroblast cell adhesion was decreased to a 1% level compared with that on the conventional silicone hydrogel contact lenses. The movement of the cells on the surface of the MPC polymer-modified lens material was greater compared with other silicone hydrogel contact lenses indicating that lubrication of the contact lenses on ocular tissue might be improved. The superior hydrophilic nature of the MPC polymer layer provides improved surface properties compared to the underlying silicone hydrogel base substrate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要