谷歌浏览器插件
订阅小程序
在清言上使用

Graph Reachability on Parallel Many-Core Architectures

COMPUTATION(2020)

引用 2|浏览0
暂无评分
摘要
Many modern applications are modeled using graphs of some kind. Given a graph, reachability, that is, discovering whether there is a path between two given nodes, is a fundamental problem as well as one of the most important steps of many other algorithms. The rapid accumulation of very large graphs (up to tens of millions of vertices and edges) from a diversity of disciplines demand efficient and scalable solutions to the reachability problem. General-purpose computing has been successfully used on Graphics Processing Units (GPUs) to parallelize algorithms that present a high degree of regularity. In this paper, we extend the applicability of GPU processing to graph-based manipulation, by re-designing a simple but efficient state-of-the-art graph-labeling method, namely the GRAIL (Graph Reachability Indexing via RAndomized Interval) algorithm, to many-core CUDA-based GPUs. This algorithm firstly generates a label for each vertex of the graph, then it exploits these labels to answer reachability queries. Unfortunately, the original algorithm executes a sequence of depth-first visits which are intrinsically recursive and cannot be efficiently implemented on parallel systems. For that reason, we design an alternative approach in which a sequence of breadth-first visits substitute the original depth-first traversal to generate the labeling, and in which a high number of concurrent visits is exploited during query evaluation. The paper describes our strategy to re-design these steps, the difficulties we encountered to implement them, and the solutions adopted to overcome the main inefficiencies. To prove the validity of our approach, we compare (in terms of time and memory requirements) our GPU-based approach with the original sequential CPU-based tool. Finally, we report some hints on how to conduct further research in the area.
更多
查看译文
关键词
graph,graph algorithms,parallel computing,algorithm design and analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要