A Comprehensive Survey on Knowledge Graph Entity Alignment via Representation Learning

arxiv(2021)

引用 6|浏览53
暂无评分
摘要
In the last few years, the interest in knowledge bases has grown exponentially in both the research community and the industry due to their essential role in AI applications. Entity alignment is an important task for enriching knowledge bases. This paper provides a comprehensive tutorial-type survey on representative entity alignment techniques that use the new approach of representation learning. We present a framework for capturing the key characteristics of these techniques, propose two datasets to address the limitation of existing benchmark datasets, and conduct extensive experiments using the proposed datasets. The framework gives a clear picture of how the techniques work. The experiments yield important results about the empirical performance of the techniques and how various factors affect the performance. One important observation not stressed by previous work is that techniques making good use of attribute triples and relation predicates as features stand out as winners.
更多
查看译文
关键词
Knowledge graph, Entity alignment, Knowledge graph alignment, Knowledge base, Representation learning, Deep learning, Embedding, Graph neural networks, Graph convolutional networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要