Lateral Flow Assay Of Methicillin-Resistant Staphylococcus Aureus Using Bacteriophage Cellular Wall-Binding Domain As Recognition Agent

BIOSENSORS & BIOELECTRONICS(2021)

引用 27|浏览4
暂无评分
摘要
As one of the most common and noticeable superbugs, methicillin-resistant Staphylococcus aureus (MRSA) has long been a major threat to public health. To meet the demand for effective diagnosis of MRSA-induced infection, it is urgent to establish rapid assay method for this type of pathogen. In this study, an aqueous soluble cellular wall-binding domain (CWBD) protein from bacteriophage P108 was obtained with a recombinant expression technique. It can act as a wide-spectrum binding agent for all MRSA strains and exclude the interference from methicillin-susceptible strains of Staphylococcus aureus and other species of bacteria. To establish a lateral flow assay (LFA) method for MRSA, CWBD-coupled time-resolved fluorescent microspheres (FMs) were used as signal probes for tracing MRSA, and a nitrocellulose membrane immobilized with porcine IgG was used to capture MRSA. With the LFA based on sandwich format, MRSA can be assayed within 10 min with a broad linear range of 6.6 ? 102?6.6 ? 107 CFU/mL. Its application potential has been demonstrated by assaying different types of bacteria-contaminated real samples. The results suggest that the LFA strip using recombinant CWBD as the recognition agent provides a rapid, portable, cost-effective approach for point-of-care testing of MRSA.
更多
查看译文
关键词
Methicillin-resistant Staphylococcus aureus, Cellular wall-binding domain, Bacteriophage, Lateral flow test strip, Point-of-care testing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要