Topological Boundary Constraints In Artificial Colloidal Ice

PHYSICAL REVIEW LETTERS(2021)

引用 5|浏览2
暂无评分
摘要
The effect of boundaries and how these can be used to influence the bulk behavior in geometrically frustrated systems arc both long-standing puzzles, often relegated to a secondary role. Here, we use numerical simulations and "proof of concept" experiments to demonstrate that boundaries can be engineered to control the bulk behavior in a colloidal artificial ice. We show that an antiferromagnetic frontier forces the system to rapidly reach the ground state (GS), as opposed to the commonly implemented open or periodic boundary conditions. We also show that strategically placing defects at the corners generates novel bistable states, or topological strings, which result from competing GS regions in the bulk. Our results could be generalized to other frustrated micro- and nanostructures where boundary conditions may be engineered with lithographic techniques.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要