谷歌浏览器插件
订阅小程序
在清言上使用

Rectifiers' Design and Optimization for a Dual-Channel RF Energy Harvester

Journal of low power electronics and applications(2020)

引用 13|浏览0
暂无评分
摘要
This paper presents the design and implementation of two front-ends for RF (Radio Frequency) energy harvesting, comparing them with the commercial one-P2110 by Powercast Co. (Pittsburgh, PA, USA) Both devices are implemented on a discrete element board with microstrip lines combined with lumped elements and are optimized for two different input power levels (-10 dBm and 10 dBm, respectively), at the GSM900 frequencies. The load has been fixed at 5k ohm, after a load-pull analysis on systems. The rectifiers stages implement two different Schottky diodes in two different topologies: a single diode and a 2-stage Dickson's charge pump. The second one is compared with the P2110 by generating RF fields at 915 MHz with the Powercast Powerspot. The main aim of this work is to design simple and efficient low-cost devices, which can be used as a power supply for low-power autonomous sensors, with better performances than the current solutions of state-of-the-art equipment, providing an acceptable voltage level on the load. Measurements have been conducted for input power range -20 dBm up to 10 dBm; the best power conversion efficiency (PCE) is obtained with the second design, which reaches a value of 70% at 915 MHz. In particular, the proposed device exhibited better performance compared to the P2110 commercial device, allowing a maximum distance of operation of up to 22 meters from the dedicated RF power source, making it suitable even for IoT (Internet of Things) applications.
更多
查看译文
关键词
RF energy harvesting,rectenna,Powercast,RF and microwave power transmission
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要