谷歌浏览器插件
订阅小程序
在清言上使用

Bifunctional Perovskite-BiVO4 Tandem Devices for Uninterrupted Solar and Electrocatalytic Water Splitting Cycles

Advanced Functional Materials(2021)

引用 31|浏览8
暂无评分
摘要
Photoelectrochemical (PEC) fuel synthesis depends on the intermittent solar intensity of the diurnal cycle and ceases at night. Here, an integrated device that does not only possess PEC water splitting functionality, but also operates as an electrolyzer in the nocturnal period to improve the overall capacity factor is described. The bifunctional system is based on an "artificial leaf" tandem PEC architecture that contains an inverse-structure lead halide perovskite protected by a graphite epoxy/parylene-C coating (conferring 96 h stability of operation in water), and a porous BiVO4 semiconductor. The light-absorbers are interfaced with a H-2 evolution catalyst (Pt) and a Co-based water oxidation catalyst, respectively, which can also be directly driven by electricity. Thus, the device can operate in PEC mode during irradiation and switch to an electricity-powered mode in the dark through bypassing of the semiconductor configuration. The bifunctional perovskite-BiVO4 tandem provides a solar-to-hydrogen efficiency of 1.3% under simulated solar irradiation and an onset for water electrolysis at 1.8 V. The compact design and low cost of the proposed device may provide an advantage over other technologies for round-the-clock fuel production.
更多
查看译文
关键词
electrocatalysis,hydrogen,photoelectrochemistry,solar fuels,water splitting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要