谷歌浏览器插件
订阅小程序
在清言上使用

Docking and molecular dynamics predicted B-DNA and dihydropyrimidinone selenoesters interactions elucidating antiproliferative effects on breast adenocarcinoma cells

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS(2022)

引用 7|浏览25
暂无评分
摘要
Dihydropyrimidinones have demonstrated different biological activities including anticancer properties. Cytotoxic potential and antiproliferative potential of new dihydropyrimidinone-derived selenoesters (Se-DHPM) compounds were assessed in vitro against the breast adenocarcinoma cells (MCF-7). Among the eight Se-DHPM compounds tested just 49A and 49F were the most cytotoxic for MCF-7 and the most selective for the non-tumor strain (McCoy) and reduced cell viability in a time- and concentration-dependent manner. Compounds 49A and 49F increased the rate of cell death due to apoptosis and necrosis comparatively to the control, however only the 49F showed antiproliferative potential, reducing the number of colonies formed. In the molecular assay 49A interacts with CT-DNA and caused hyperchromism while 49F caused a hypochromic effect. The intercalation test revealed that the two compounds caused destabilization in the CT-DNA molecule. This effect was evidenced by the loss of fluorescence when the compounds competed and caused the displacement of propidium iodide. Simulations (docking and molecular dynamics) using B-DNA brought a greater understanding of ligand-B-DNA interactions. Furthermore, they predicted that the compounds act as minor groove ligands that are stabilized through hydrogen bonds and hydrophobic interactions. However, the form of interaction foreseen for 49A was more energetically favorable and had more stable hydrogen bonds during the simulation time. Despite some violations foreseen in the ADMET for 49F, the set of other results point to this Se-DHPM as a promising leader compound with anti-tumor potential for breast cancer.
更多
查看译文
关键词
Antiproliferative effects,DNA interaction,dihydropyrimidinone,docking,molecular dynamics simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要