How a sticky fluid facilitates prey retention in a carnivorous pitcher plant (Nepenthes rafflesiana)

Acta Biomaterialia(2021)

引用 4|浏览0
暂无评分
摘要
Nepenthes pitcher plants grow in nutrient-poor soils and produce large pitfall traps to obtain additional nutrients from animal prey. Previous research has shown that the digestive secretion in N. rafflesiana is a sticky viscoelastic fluid that retains insects much more effectively than water, even after significant dilution. Although the retention of prey is known to depend on the fluid's physical properties, the details of how the fluid interacts with insect cuticle and how its sticky nature affects struggling insects are unclear. In this study, we investigated the mechanisms behind the efficient prey retention in N. rafflesiana pitcher fluid. By measuring the attractive forces on insect body parts moved in and out of test fluids, we show that it costs insects more energy to free themselves from pitcher fluid than from water. Moreover, both the maximum force and the energy required for retraction increased after the first contact with the pitcher fluid. We found that insects sink more easily into pitcher fluid than water and, accordingly, the surface tension of N. rafflesiana pitcher fluid was lower than that of water (60.2 vs. 72.3 mN/m). By analysing the pitcher fluid's wetting behaviour, we demonstrate that it strongly resists dewetting from all surfaces tested, leaving behind residual films and filaments that can facilitate re-wetting. This inhibition of dewetting may be a further consequence of the fluid's viscoelastic nature and likely represents a key mechanism underlying prey retention in Nepenthes pitcher plants.
更多
查看译文
关键词
Pitcher plants,Wet adhesion,Biomechanics,Dewetting,Surface tension,Biopolymers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要