A further study of quadratic APN permutations in dimension nine

Finite Fields and Their Applications(2022)

引用 5|浏览19
暂无评分
摘要
Recently, Beierle and Leander found two new sporadic quadratic APN permutations in dimension 9. Up to EA-equivalence, we present a single trivariate representation of those two permutations as Cu:(F2m)3→(F2m)3,(x,y,z)↦(x3+uy2z,y3+uxz2,z3+ux2y), where m=3 and u∈F23∖{0,1} such that the two permutations correspond to different choices of u. We then analyze the differential uniformity and the nonlinearity of Cu in a more general case. For m≥3 being a multiple of 3 and u∈F2m not being a 7-th power, we show that the differential uniformity of Cu is bounded above by 8, and that the linearity of Cu is bounded above by 81+⌊m2⌋. Based on numerical experiments, we conjecture that Cu is not APN if m is greater than 3. We also analyze the CCZ-equivalence classes of the quadratic APN permutations in dimension 9 known so far and derive a lower bound on the number of their EA-equivalence classes. We further show that the two sporadic APN permutations share an interesting similarity with Gold APN permutations in odd dimension divisible by 3, namely that a permutation EA-inequivalent to those sporadic APN permutations and their inverses can be obtained by just applying EA transformations and inversion to the original permutations.
更多
查看译文
关键词
06E30,94A60
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要