Extracellular vesicles derived from M2 microglia reduce ischemic brain injury through microRNA-135a-5p/TXNIP/NLRP3 axis

LABORATORY INVESTIGATION(2021)

引用 18|浏览12
暂无评分
摘要
Accumulating evidences have suggested that extracellular vesicles (EVs) are crucial players in the pathogenesis of ischemic brain injury. This study was designed to explore the specific functions of M2 phenotype microglia-derived EVs in ischemic brain injury progression. The expression of microRNA-135a-5p (miR-135a-5p) in M2 microglia-derived EVs was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), followed by the identification of expression relationship among miR-135a-5p, thioredoxin-interacting protein (TXNIP), and nod-like receptor protein 3 (NLRP3) by dual luciferase reporter gene assay. After construction of an oxygen-glucose deprivation/reperfusion (OGD/R) cell model, the effects of miR-135a-5p on the biological characteristics of HT-22 cells were assessed by cell counting kit 8 (CCK-8) assay and flow cytometry. Finally, a mouse model of transient middle cerebral artery occlusion (tMCAO) was established and cerebral infarction volume was determined by triphenyltetrazolium chloride (TTC) staining and the expression of IL-18 and IL-1β in the brain tissue was determined by enzyme-linked immunosorbent assay (ELISA). We found that M2 microglia-derived EVs had high expression of miR-135a-5p, and that miR-135a-5p in M2 microglia-derived EVs negatively regulated the expression of NLRP3 via TXNIP. Overexpression of miR-135a-5p promoted the proliferation but inhibited the apoptosis of neuronal cells, and inhibited the expression of autophagy-related proteins. M2 microglia-derived EVs delivered miR-135a-5p into neuronal cells to inhibit TXNIP expression, which further inhibited the activation of NLRP3 inflammasome, thereby reducing neuronal autophagy and ischemic brain injury. Hence, M2 microglia-derived EVs are novel therapeutic targets for ischemic brain injury treatment.
更多
查看译文
关键词
Brain injuries,Molecular biology,Medicine/Public Health,general,Pathology,Laboratory Medicine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要