谷歌浏览器插件
订阅小程序
在清言上使用

Mechanically Robust and Flexible Perovskite Solar Cells Via a Printable and Gelatinous Interface

ACS applied materials & interfaces(2021)

引用 34|浏览12
暂无评分
摘要
Dramatic development in perovskite solar cells (PSCs) and the widespread application of wearable electronics have attracted extensive research in the area of large-scale flexible solar power sources based on PSCs. Manufacturing of flexible PSCs by printing is considered to be one of the most potential methods. However, it is still a great challenge to print large-area uniform hole transport layers (HTLs) on a rough and soft plastic substrate to achieve flexible PSCs with high efficiency and good stability. Herein, we synthesized a viscous poly(3,4-ethylene dioxythiophene):graphene oxide (PEDOT:GO) gel and then blade-coated the gel by high-speed shearing to achieve high-quality HTLs with scalable size. The glued HTLs exhibit high viscosity, electrical conductivity, and mechanical flexibility, which enhance the adhesive ability and protect the brittle ITO electrode and perovskite crystals. Due to the gelatinous HTLs, we achieved an optimal efficiency of the flexible PSCs (1.01 cm2) of 19.7%, while that of the large-area flexible perovskite module (25 cm2) exceeded 10%. This is the highest efficiency for reported flexible MAPbI3 PSCs (1.01 cm2). Furthermore, the efficiency retention of the PSCs remains over 85% after 5000 bending cycles, which is of great significance for the practical application of PSCs in portable and wearable electronics.
更多
查看译文
关键词
blade coating,flexibility,gelatinized hole transport layers,stability,perovskite solar cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要