Carrying Out CNN Channel Pruning in a White Box.

IEEE transactions on neural networks and learning systems(2022)

引用 23|浏览65
暂无评分
摘要
Channel pruning has been long studied to compress convolutional neural networks (CNNs), which significantly reduces the overall computation. Prior works implement channel pruning in an unexplainable manner, which tends to reduce the final classification errors while failing to consider the internal influence of each channel. In this article, we conduct channel pruning in a white box. Through deep visualization of feature maps activated by different channels, we observe that different channels have a varying contribution to different categories in image classification. Inspired by this, we choose to preserve channels contributing to most categories. Specifically, to model the contribution of each channel to differentiating categories, we develop a class-wise mask for each channel, implemented in a dynamic training manner with respect to the input image's category. On the basis of the learned class-wise mask, we perform a global voting mechanism to remove channels with less category discrimination. Lastly, a fine-tuning process is conducted to recover the performance of the pruned model. To our best knowledge, it is the first time that CNN interpretability theory is considered to guide channel pruning. Extensive experiments on representative image classification tasks demonstrate the superiority of our White-Box over many state-of-the-arts (SOTAs). For instance, on CIFAR-10, it reduces 65.23% floating point operations per seconds (FLOPs) with even 0.62% accuracy improvement for ResNet-110. On ILSVRC-2012, White-Box achieves a 45.6% FLOP reduction with only a small loss of 0.83% in the top-1 accuracy for ResNet-50. Code is available at https://github.com/zyxxmu/White-Box.
更多
查看译文
关键词
Computational modeling,Training,Convolutional neural networks,Visualization,Task analysis,Head,Channel estimation,Channel pruning,efficient inference,image classification,network structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要