Coupling high frequency monitoring and bioassay experiments to investigate a harmful algal bloom in the Bay of Seine (French-English Channel).

Marine pollution bulletin(2021)

引用 9|浏览7
暂无评分
摘要
Coastal ecosystems are increasingly threatened by eutrophication and dystrophy. In this context, the full pattern of a bloom dominated by the dinoflagellate, Lepidodinium chlorophorum, was investigated by a high frequency monitoring buoy equipped with sensors allowing nutrients and photosynthesis measurements. An increase of the N/P ratio affected phytoplankton physiology leading to bloom collapse with a slight oxygen depletion. In parallel, enrichment experiments were performed on the natural bloom population. After 5 days of incubation the community structure, using flow cytometry and several physiological parameters were analysed. The data reveal a potential N and P co-limitation and a decoupling between primary production and productivity in fully enriched conditions. Under unbalanced N/P inputs, high level of alkaline phosphatase activity and transparent exopolymeric particle production, which favour phytoplankton sedimentation, were observed. Nutrient inputs and their stoichiometry control phytoplankton growth, the community structure, physiological regulations, the fate of the bloom and consequences.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要