A Bimodal Nanosensor For Probing Influenza Fusion Protein Activity Using Magnetic Relaxation

ACS SENSORS(2021)

引用 0|浏览12
暂无评分
摘要
Viral fusion is a critical step in the entry pathway of enveloped viruses and remains a viable target for antiviral exploration. The current approaches for studying fusion mechanisms include ensemble fusion assays, high-resolution cryo-TEM, and single-molecule fluorescence-based methods. While these methods have provided invaluable insights into the dynamic events underlying fusion processes, they come with their own limitations. These often include extensive data and image analysis in addition to experimental time and technical requirements. This work proposes the use of the spin-spin T2 relaxation technique as a sensitive bioanalytical method for the rapid quantification of interactions between viral fusion proteins and lipids in real time. In this study, new liposome-coated iron oxide nanosensors (LIONs), which mimic as magnetic-labeled host membranes, are reported to detect minute interactions occurring between the membrane and influenza's fusion glycoprotein, hemagglutinin (HA). The influenza fusion protein's interaction with the LION membrane is detected by measuring changes in the sensitive spin-spin T2 magnetic relaxation time using a bench-top NMR instrument. More data is gleaned from including the fluorescent dye DiI into the LION membrane. In addition, the effects of environmental factors on protein-lipid interaction that affect fusion such as pH, time of incubation, trypsin, and cholesterol were also examined. Furthermore, the efficacy and sensitivity of the spin-spin T2 relaxation assay in quantifying similar protein/lipid interactions with more native configurations of HA were demonstrated using virus-like particles (VLPs). Shorter domains derived from HA were used to start a reductionist path to identify the parts of HA responsible for the NMR changes observed. Finally, the known fusion inhibitor Arbidol was employed in our spin-spin T2 relaxation-based fusion assay to demonstrate the application of LIONs in real-time monitoring of this aspect of fusion for evaluation of potential fusion inhibitors.
更多
查看译文
关键词
magneto-liposome, influenza fusion, magnetic relaxation, nanosensor, pathogen detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要