Electrically tunable Feshbach resonances in twisted bilayer semiconductors.

SCIENCE(2021)

引用 25|浏览3
暂无评分
摘要
Moiré superlattices in transition metal dichalcogenide bilayers provide a platform for exploring strong correlations with optical spectroscopy. Despite the observation of rich Mott-Wigner physics stemming from an interplay between the periodic potential and Coulomb interactions, the absence of tunnel coupling–induced hybridization of electronic states has ensured a classical layer degree of freedom. We investigated a MoSe homobilayer structure where interlayer coherent tunneling allows for electric field–controlled manipulation and measurement of the ground-state hole-layer pseudospin. We observed an electrically tunable two-dimensional Feshbach resonance in exciton-hole scattering, which allowed us to control the strength of interactions between excitons and holes located in different layers. Our results may enable the realization of degenerate Bose-Fermi mixtures with tunable interactions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要