Cognitive network hyperactivation and motor cortex decline correlate with ALS prognosis.

Neurobiology of aging(2021)

引用 11|浏览5
暂无评分
摘要
We aimed to quantitatively characterize progressive brain network disruption in Amyotrophic Lateral Sclerosis (ALS) during cognition using the mismatch negativity (MMN), an electrophysiological index of attention switching. We measured the MMN using 128-channel EEG longitudinally (2-5 timepoints) in 60 ALS patients and cross-sectionally in 62 healthy controls. Using dipole fitting and linearly constrained minimum variance beamforming we investigated cortical source activity changes over time. In ALS, the inferior frontal gyri (IFG) show significantly lower baseline activity compared to controls. The right IFG and both superior temporal gyri (STG) become progressively hyperactive longitudinally. By contrast, the left motor and dorsolateral prefrontal cortices are initially hyperactive, declining progressively. Baseline motor hyperactivity correlates with cognitive disinhibition, and lower baseline IFG activities correlate with motor decline rate, while left dorsolateral prefrontal activity predicted cognitive and behavioural impairment. Shorter survival correlates with reduced baseline IFG and STG activity and later STG hyperactivation. Source-resolved EEG facilitates quantitative characterization of symptom-associated and symptom-preceding motor and cognitive-behavioral cortical network decline in ALS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要