Convolutional Neural Networks for the Classification of the Microstructure of Tight Sandstone

Ana Gabriela Reyna Flores,Quentin Fisher,Piroska Lorinczi

information processing and trusted computing(2021)

引用 0|浏览0
暂无评分
摘要
Abstract Tight gas sandstone reservoirs vary widely in terms of rock type, depositional environment, mineralogy and petrophysical properties. For this reason, estimating their permeability is a challenge when core is not available because it is a property that cannot be measured directly from wire-line logs. The aim of this work is to create an automatic tool for rock microstructure classification as a first step for future permeability prediction. Permeability can be estimated from porosity measured using wire-line data such as derived from density-neutron tools. However, without additional information this is highly inaccurate because porosity-permeability relationships are controlled by the microstructure of samples and permeability can vary by over five orders of magnitude. Experts can broadly estimate porosity-permeability relationships by analysing the microstructure of rocks using Scanning Electron Microscopy (SEM) or optical microscopy. Such estimates are, however, subjective and require many years of experience. A Machine Learning model for the automation of rock microstructure determination on tight gas sandstones has been built using Convolutional Neural Networks (CNNs) and trained on backscattered images from cuttings. Current results were obtained by training the model on around 24,000 Back Scattering Electron Microscopy (BSEM) images from 25 different rock samples. The obtained model performance for the current dataset are 97% of average of both validation and test categorical accuracy. Also, loss of 0.09 and 0.089 were obtained for validation and test correspondingly. Such high accuracy and low loss indicate an overall great model performance. Other metrics and debugging techniques such Gradient-weighted Class Activation Mapping (Grad-CAM), Receiver Operator Characteristics (ROC) and Area Under the Curve (AUC) were considered for the model performance evaluation obtaining positive results. Nevertheless, this can be improved by obtaining images from new already available samples and make the model generalizes better. Current results indicate that CNNs are a powerful tool and their application over thin section images is an answer for image analysis and classification problems. The use of this classifier removes the subjectivity of estimating porosity-permeability relationships from microstructure and can be used by non-experts. The current results also open the possibility of a data driven permeability prediction based on rock microstructure and porosity from well logs.
更多
查看译文
关键词
convolutional neural networks,neural networks,microstructure,classification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要