Absolute Testing Method Of Shift-Rotation Based On The Influence Function

APPLIED OPTICS(2021)

引用 2|浏览0
暂无评分
摘要
The absolute testing of an optical surface with the shift-rotation method is an effective way to obtain an optical surface with high accuracy. The traditional shift-rotation method based on Zernike polynomials has a large number of computations and poor fitting accuracy for high frequency. Additionally, the number of calculations of the pixel-level spatial frequency method in solving the test and reference error based on each pixel is too large, which leads to poor practicability in reality. An optimized absolute testing method of shift-rotation based on the influence function is presented in this paper. By introducing the concept of the influence function in adaptive optics instead of a Zernike polynomial, the calculation accuracy of the mid-and high-frequency surface is improved, and higher precision of the absolute surface can be obtained. Relevant theoretical simulation and experimental verification are carried out. The experimental results compared with the Zernike and pixel-level methods show that the reference and test surface can be well reconstructed by using the proposed shift-rotation method based on the influence function. (C) 2021 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要