Gram-scale synthesis of ZnS/NiO core-shell hierarchical nanostructures and their enhanced H2 production in crude glycerol and sulphide wastewater.

Environmental research(2021)

引用 19|浏览2
暂无评分
摘要
Design and development of the efficient and durable photocatalyst that generates H2 fuel utilizing industrial wastewater under solar light irradiation is a sustainable process. Innumerable photocatalysts have been reported for efficient H2 production, but their large-scale production with the same efficiency of H2 production is a challenging task. In this study, a few gram-scale syntheses of ZnS wrapped with NiO hierarchical core-shell nanostructure via the surfactant-mediated process has been reported. Morphology and crystal structure analysis of ZnS/NiO showed spherical shaped hierarchical core-shell with cubic and face-centered cubic crystal structures. The surface examination confirmed the presence of Zn2+, S2-, Ni2+ and O2- ions in the nanocomposite. The photocurrent and photoluminescence studies of pristine and nanocomposites revealed that core-shell material is non-corrosive with a prolonged life-time of photo-excitons. Parametric studies on photocatalytic H2 generation in lab-scale photoreactor using crude glycerol in water recorded a high rate of H2 generation of 9.3 mmol h-1.g-1 of catalyst under the simulated solar light irradiation. Optimized reaction parameters are extended to a demonstrative photoreactor containing aqueous crude glycerol produced 18.5 mmol h-1 of H2 generation under the natural solar light irradiation. The same nanostructures were further tested with the simulated sulfide wastewater and the optimized catalyst showed H2 production of 350 mL h-1. The experimental results of time-on stream and catalytic stability demonstrated that ZnS/NiO hierarchical core-shell nanostructures can be recyclable and reusable for the continuous photocatalytic H2 generation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要