A Large Insertion Domain in the Rho Factor From a Low G + C, Gram-negative Bacterium is Critical for RNA Binding and Transcription Termination Activity.

Journal of molecular biology(2021)

引用 7|浏览3
暂无评分
摘要
Rho-dependent termination of transcription (RDTT) is a critical regulatory mechanism specific to bacteria. In a subset of species including most Actinobacteria and Bacteroidetes, the Rho factor contains a large, poorly conserved N-terminal insertion domain (NID) of cryptic function. To date, only two NID-bearing Rho factors from high G + C Actinobacteria have been thoroughly characterized. Both can trigger RDTT at promoter-proximal sites or with structurally constrained transcripts that are unsuitable for the archetypal, NID-less Rho factor of Escherichia coli (EcRho). Here, we provide the first biochemical characterization of a NID-bearing Rho factor from a low G + C bacterium. We show that Bacteroides fragilis Rho (BfRho) is a bona fide RNA-dependent NTPase motor able to unwind long RNA:DNA duplexes and to disrupt transcription complexes. The large NID (~40% of total mass) strongly increases BfRho affinity for RNA, is strictly required for RDTT, but does not promote RDTT at promoter-proximal sites or with a structurally constrained transcript. Furthermore, the NID does not preclude modulation of RDTT by transcription factors NusA and NusG or by the Rho inhibitor bicyclomycin. Although the NID contains a prion-like Q/N-rich motif, it does not spontaneously trigger formation of β-amyloids. Thus, despite its unusually large RNA binding domain, BfRho behaves more like the NID-less EcRho than NID-bearing counterparts from high G + C Actinobacteria. Our data highlight the evolutionary plasticity of Rho's N-terminal region and illustrate how RDTT is adapted to distinct genomic contents.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要