谷歌浏览器插件
订阅小程序
在清言上使用

Metabolic Footprint Analysis of Volatile Metabolites by Gas Chromatography-Ion Mobility Spectrometry to Discriminate Between Different Fermentation Temperatures During Streptococcus Thermophilus Milk Fermentation.

Journal of Dairy Science(2021)

引用 17|浏览17
暂无评分
摘要
Streptococcus thermophilus is widely used in the dairy industry to produce fermented milk. Gas chromatography-ion mobility spectrometry-based metabolomics was used to discriminate different fermentation temperatures (37°C and 42°C) at 3 time points (F0: pH = 6.50 ± 0.02; F1: pH = 5.20 ± 0.02; F2: pH = 4.60 ± 0.02) during S. thermophilus milk fermentation, and differences of fermentation physical properties and growth curves were also evaluated. Fermentation was completed (pH 4.60) after 6 h at 42°C and after 8 h at 37°C; there were no significant differences in viable cell counts and titratable acidity; water-holding capacity and viscosity were higher at 37°C than at 42°C. Different fermentation temperatures affected volatile metabolic profiles. After the fermentation was completed, the volatile metabolites that could be used to distinguish the fermentation temperature were hexanal, butyraldehyde, ethyl acetate, ethanol, 3-methylbutanal, 3-methylbutanoic acid, and 2-methylpropionic acid. Specifically, at 37°C of milk fermentation, branched-chain AA had higher levels, and leucine, isoleucine, and valine were involved in growth and metabolism, which promoted accumulation of some short-chain fatty acids such as 3-methylbutanoic acid and 2-methylpanprooic acid. At 42°C, at 3 different time points during fermentation, ethanol from glycolysis all presented higher levels, including acetone and 3-methylbutanal, producing a more pleasant flavor in the fermented milk. This work provides detailed insight into S. thermophilus fermented milk metabolites that differed between incubation temperatures; these data can be used for understanding and eventually predicting metabolic changes during milk fermentation.
更多
查看译文
关键词
Streptococcus thermophilus S10,fermented milk,volatile metabolites,metabolic progression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要